HIV-1 Transcription Inhibition Using Small RNA-Binding Molecules

Authors

  • MAYA PASHAI Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA
  • Yuriy Kim Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA
  • Anastasia Williams Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA
  • Fatah Kashanchi Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA

DOI:

https://doi.org/10.13021/jssr2023.3890

Abstract

HIV-1 is a retrovirus that integrates its genetic code into an infected host cell’s DNA. HIV-1 replication occurs in cells with a key mechanism known as the Tat-TAR interaction. Tat, the HIV-1 transactivator protein, interacts with the transactivation response element (TAR), an element of viral RNA, to incite the engagement of an essential protein called transcription elongation factor-b (P-TEFb). This process allows transcription of the viral genome to begin. The most effective treatment for HIV-1 infection, known as combination antiretroviral therapy (cART), currently contains no means of inhibition for this transcription mechanism, thus presenting a gap in HIV-1 antiviral treatment. This study tests two small molecules that have previously demonstrated the ability to bind to HIV-1 TAR RNA and showed successful inhibition of viral protein expression. We used a biotinylation pull-down assay to test the disruption of Tat from TAR RNA interaction using these TAR-binding molecules, and we also used a chromatin immunoprecipitation (ChIP) assay to determine whether treatment with TAR-binding molecules affected occupancy of transcription factors on HIV-1 long terminal repeat (LTR) DNA, which is the initiation site for viral transcription.

References:

  1. Aboul-Ela, F.; Karn, J.; Varani, G. Structure of HIV-1 TAR RNA in the Absence of Ligands Reveals a Novel Conformation of the Trinucleotide Bulge. Nucleic Acids Res. 1996, doi:10.1093/NAR/24.20.3974.
  2. Alanazi, A.; Ivanov, A.; Kumari, N.; Lin, X.; Wang, S.; Kovalskyy, D.; Nekhai, S. Targeting Tat–TAR RNA Interaction for HIV-1 Inhibition. Viruses 2021, 13, 2004, doi:10.3390/v13102004.
  3. DeMarino, C.; Pleet, M.L.; Cowen, M.; Barclay, R.A.; Akpamagbo, Y.; Erickson, J.; Ndembi, N.; Charurat, M.; Jumare, J.; Bwala, S.; Alabi, P.; Hogan, M.; Gupta, A.; Noren Hooten, N.; Evans, M.K.; Lepene, B.; Zhou, W.; Caputi, M.; Romerio, F.; Royal, W.; El-Hage, N.; Liotta, L.A.; Kashanchi F. Antiretroviral Drugs Alter the Content of Extracellular Vesicles from HIV-1-Infected Cells. Sci Rep. 2018 May 16;8(1):7653. doi: 10.1038/s41598-018-25943-2.
  4. Mahmoudi, T.; Parra, M.; Vries, R.G.J.; Kauder, S.E.; Verrijzer, C.P.; Ott, M.; Verdin, E. The SWI/SNF Chromatin-Remodeling Complex Is a Cofactor for Tat Transactivation of the HIV Promoter *. J. Biol. Chem. 2006, 281, 19960–19968, doi:10.1074/jbc.M603336200.
  5. Pierson, T.; McArthur, J.; Siliciano, R.F. Reservoirs for HIV-1: Mechanisms for Viral Persistence in the Presence of Antiviral Immune Responses and Antiretroviral Therapy. Annu. Rev. Immunol. 2000, 18, 665–708, doi:10.1146/annurev.immunol.18.1.665.

Published

2023-10-27

Issue

Section

College of Science: School of Systems Biology

Categories