Teaching Technology Tour and Q&A

Presenters:

Katrina Johnson Crystal Clemons Alexandra Masterson Joe Balducci Jim McLean Julia Tungli LeAnn Pittman

Before We Get Started

- Keep your Microphones Muted
- Q&A after the teaching technology tour, so please type your questions in the Chat
- Complete the one-question Survey to provide Feedback (We will provide a link)

Topics

- How teaching technologies support these three basic teaching practices:
 - sharing information
 - checking student understanding in real time or asynchronously
 - getting students to work collaboratively
- How to incorporate teaching technologies and online learning management system tools
- How to engage students with technologies in Mason classrooms
- Where to find information and advice on teaching technologies

Overview Pedagogical Overview and Classroom Technology **Online Labs Teaching Online Technology Tools** Overview Experience Stearns Center, Digital Learning College of Science ITS Q&A **Breakout Sessions**

Choose Two Breakout Sessions

Main Room Alexandra Masterson – College of Science

A

Classroom Technologies: How Can We Help You? (20 mins) Crystal Clemons and LeAnn Pittman - ITS

B

Zoom and Blackboard Collaborate Ultra: Key Differences, Use Cases, and More (20 mins) Julia Tungli - ITS

Vyond: From Script to Animated Video (20 mins) Katrina Johnson – The Stearns Center, Digital Learning

Virtual Realty/Augmented Realty for Online Learning (20 mins) Jim McLean – ITS

Rename Your Screen Name e.g., Katrina Johnson A,B

Pedagogical Overview and Online Technology Tools

Katrina Johnson Instructional Designer, Digital Learning Stearns Center for Teaching and Learning

Community of Inquiry Model

Adapted from Garrison, D.R., Anderson, T., Archer, W. (1999) Critical inquiry in a text-based environment: Computer conferencing in higher education. *The Internet and Higher Education* 2(2), 87–105

Tips for Success

- Begin with your learning outcomes
- Consider the technology needs of your students
- See the Stearns Center website for recommended sample statements for technology requirements and class recordings
- Practice with the technology tool and allow your students to practice

Resources

Stearns Center Helpful Resources

- <u>Teaching in Fall 2020</u>
- Designing Your Syllabus
 - NEW Fall 2020: Policies for New Course Structures and Interactions

Where to Locate Animations Images, Videos and More

- <u>Vyond</u>
- <u>Powtoon</u>
- <u>Kaltura Capture</u>
- <u>Animoto</u>
- <u>Canva</u>
- Mason Photos
- <u>Pexels</u>
- <u>Pixabay</u>
- <u>Piktochart</u>
- <u>Creative Commons</u>
- <u>Smithsonian Open Access</u>
- Unsplash

Classroom Technology Overview

Crystal Clemons Director, Classroom & Lab Technologies

ITS

Classroom Technology at Mason

- Supports over 200 classrooms across four campuses
- Provides standard technologies to facilitate a standardized user experience
- Technologies offer flexibility in teaching supporting both high tech and low tech instruction

Classroom Technology Updates Fall 2020 return to campus activities addressed a new challenge COVID-19 PANDEMIC

Our question: How can we utilize technology to address the teaching and learning needs during the pandemic?

Fall 2020 return to campus activities yielded changes to all classrooms:

Classroom Technology Updates **Examples...**

The pandemic created challenges for instructors in the classroom:

- 1. Being heard while wearing masks (audio)
- 2. Teaching hybrid and blended courses and communicating with remote virtual learners (audio and video)

Pandemic challenges led to the following modifications:

Standard technology now supports hybrid and blended learning
BYOD rooms updated with more technology
Microphone installation in all rooms
Protective coverings on all technology
Modified hours for computer labs and support offices

Standard technology supporting <u>hybrid and blended learning</u> includes:

NEW

- Computer with interactive monitor (annotation capable)
- Document camera
- Microphones for speech amplification
- Standard user interface
- Webcam for audio and video conferencing with remote learners
- Classroom capture via Zoom, Bb Collaborate Ultra, etc...

✓ <u>BYOD rooms</u> updated with more technology:

- All BYOD rooms have been updated with speech amplification and the standard computer and includes:
- Computer with interactive monitor (annotation capable)
- Webcam for audio and video conferencing with remote learners
- Access to standard Mason software
- Ability for classroom capture via Zoom, Bb Collaborate Ultra, etc...

✓ Modified hours for computer labs and support offices

FFX Support:

Sunday to Saturday 7:00 to 10:30

Sci Tech Support:

- Monday to Thursday 8:00 to 10:00
- Friday 8:00 to 5:00
- Saturday and Sunday Closed

Arlington Support:

- Sunday Closed
- Monday to Friday 8:30 to 10:00
- Saturday 9 to 5

FFX JC 342 Computer Lab:

- Monday to Thursday 9 9
- Friday, Saturday, Sunday 9 8

Sci Tech Computer Lab:

- Monday to Friday 8:30 to 8:30
- Saturday and Sunday- Closed

Arlington Computer Lab:

- Monday to Thursday 9:00 to 10:00
- Friday and Saturday 9:00 to 5:00
- Closed Sunday

NFW	

	User name:	cclemons	1
CITRIX	Password:	•••••	
StoreFront	Domain:	mesa.gmu.edu	~
		Loa On	

https://mymasonapps.gmu.edu

Citrix Virtual Lab

VCL REPLACEMENT (RETIRED AFTER SUMMER 2020) IMPROVED REMOTE DELIVERY OF ACADEMIC SOFTWARE VIA THE INTERNET THIS SEMESTER SUPPORTED OVER 907 UNIQUE USERS AND SIMULTANEOUS USERS

OVER 3,900 **DIFFERENT** LAUNCES SINCE THE BEGINNING OF THE SEMESTER

Tips for Success – Demo Rooms

•Classrooms available for faculty use during the semester. The rooms will support:

- GENERAL USE
- LECTURE RECORDING
- GAINING FAMILIARITY WITH EQUIPMENT
- Rooms are as follows:
 - ✓ ENGR 1108
 - ✓BUCH D001
 - ✓ BUCH D003
 - ✓VM 118
 - ✓VM 120
 - ✓KGJ 134

Tips for Success – Tech Assistance

(703) 993-3456 or x3456 (FFX)

(703) 993-8499 or x8499 (Sci Tech)

(703) 993-8226 or x8226 (Arl) for

- 1. Remote tech support for
- 2. In-person training
- 3. Remote/Zoom training

Resources

- Classroom Specific Information Stearn's Center Classroom Guide
- ITS Services <u>https://its.gmu.edu/find-a-service/</u>
- Classroom Support <u>https://its.gmu.edu/service/classroom-support/</u>
- Learning Space Design <u>https://its.gmu.edu/service/learning-space-design/</u>

Online Labs Teaching Experience

Alexandra Masterson Assistant Professor, Biology

College of Science

How do I begin constructing my online lab?

Reviewed the literature and critically read peer-reviewed higher-ed journals.

The Chronicle of Higher Education: *How to Quickly (and safely) Move a Lab Course Online,* by Heather R. Taft, March 17, 2020.

- 1. JoVE Scientific Video Journal—Fenwick Library; Mr. Carl Leak, Biology Librarian FREE
- 2. PhET—University of Colorado Boulder. FREE
- 3. BioInteractive—Howard Hughes Medical Institute FREE
- 4. Labster **\$\$\$**
- 5. Visible Body \$\$\$
- 6. UCLA List of Online STEM Lab Resources FREE & \$\$\$
- 7. PAL (Practice Anatomy Lab)—Histology \$\$\$

Jove

jpve

JoVE is the world-leading producer and provider of science videos with the mission to improve scientific research and education. Millions of scientists, educators and students at thousands of universities, colleges, hospitals and biopharmaceutical companies worldwide use JoVE for their research, teaching and learning.

http://www.jove.com

PhET

https://phet.colorado.edu/

UCLA List of Lab Resources

Д	pps 🗡	Banner 🖌 ITS Support Ce	enter 📉 Mason Email 📧 My Mason ,	🔨 Patriot Web 📲 People Finder 🛛 😵 VPN Portal 🖉 Faculty & Staff O	iff 🔞 Pearson System Sta » 🗌 Ot	her book
	Pla File	nning for Remote an Edit View Insert Fo	d Virtual Labs at UCLA - Resour rmat Data Tools Add-ons Help	ce List 🛧 🦓 🗠	🌲 Share	2
	• 7 •	100% 👻 💿 View only	•			^
	https://	www.youtube.com/channel/	/UCJzco_RimSMKvH7sg7TWoGw/playlists			
1	А	В	с	D	E	
Î	Online	Resources for Migra	tion to Remote or Virtual Science	e. Technology, Engineering, and Math (STEM) Labs		
	Link to C	ommunity Page w/ Updated I	ist of Simulations & Virtual Labs: https://doc	. google.com/spreadsheets/d/18iVSIeOgKii58xcR8dYIS5rYvz74X11IGIWbl3brI	RzCM/htmlview	
		Subject	Website	Website URL	Description	Acc
	114	ALL	Open	http://vlab.amrita.edu/index.php	Realistic virtual lab animation	Оре
	120	ALL	University of Texas Libraries	https://guides.lib.utexas.edu/stemdata/sources	Links to open or free STEM data sources	Оре
	17	Anatomy and Physiology	Fox Valley Tech College	https://library.fvtc.edu/NursingAssistant/Virtual	List of virtual dissection programs	Оре
	18	Anatomy and Physiology	Virtual Anatomy Playlists	https://www.youtube.com/channel/UCJzco_RimSMKvH7sg7TWoGw/playlists		Оре
	19	Anatomy and Physiology	Whitman College Virtual Fetal Pig Dissection	https://www.whitman.edu/academics/departments-and-programs/biology/	supplement to laboratory dissections exploring introductory ma	a Ope
	20	Astronomy	NAAP Astronomy Labs	http://astro.unl.edu/naap/	Online simulations including curricular materials across introdu	Ope
	21	Astronomy	Stellarium	https://stellarium.org/	Software to simulate a planetarium on a computer	Оре
	88	Astronomy	Astro Simulations, from the Columbia Univer-	https://ccnmtl.github.io/astro-simulations/	HTML5 implementation of several of the NAAP simulations.	Оре
	89	Astronomy	Astro Simulations, from the Columbia Univers	https://ccnmtl.github.io/astro-simulations/	HTML5 implementation of several of the NAAP simulations.	Оре
	107	Astronomy	SDSS Skyserver projects	http://skyserver.sdss.org/dr16/en/proj/projhome.aspx	Activities to examine many topics in astronomy including H-R di	i Ope
	127	Astronomy	SDSS Skyserver projects	http://skyserver.sdss.org/dr16/en/proj/projhome.aspx	Activities to examine many topics in astronomy including H-R di	i Ope
	22	Biochemistry	BASIL (Biochemistry Authentic Scientific Inqu	https://basilbiochem.github.io/basil/	GitHub repository of biochemistry lab experiments	Оре
	23	Biochemistry	Nanome (Nano Me)	https://nanome.ai/	VR Molecular Exploration & Design, VR calculus visualizations	Оре
	24	Biology	Avida-ED Education Tool on Evolution and Sci	https://avida-ed.msu.edu/		Op∈⊥
_	25	Biology	Biofundamentals	http://virtuallaboratory.colorado.edu/virtuallabs.htm	Klymkowsky & Lundy virtual labs	Ope⊤
_						

https://docs.google.com/spreadsheets/d/1_qFmJQhislBobK8paTi3setQ0K8fmK4bE2M8EhKSDE4/edit#gid=1392400568

Advice In Starting Your Online Lab

- Design your lab with the course objectives in mind. You can always modify as your lab progress.
- Invest in an inexpensive document camera. Can use with Blackboard Collaborate and Zoom.
- Safety at home—still follow lab safety guidelines.
- Science kits or not? Liability?
- Make lab instructions simple and clear as possible.
- Be available online if you are asynchronous. Prefer synchronous, especially for freshmen & sophomores, with lots of live demonstrations online.
- Online demonstrations are a good way of demonstrating lab techniques to inexperienced students.

Q&A

Joe Balducci

Assistant Director, Instructional Technology/Media Services

ITS

Please Attend Our Spin Off Workshops at 3pm

Classroom Technologies: What to Expect in Horizon Hall (40 mins) Crystal Clemons, LeAnn Pittman

Group Work and Collaboration Tools (40 mins) Julia Tungli

Effective Video for Online Courses (40 mins) Katrina Johnson, Jim McLean

Choose Two Breakout Sessions

Main Room Alexandra Masterson – College of Science

Classroom Technologies: How Can We Help You? (20 mins) Crystal Clemons and LeAnn Pittman - ITS

Zoom and Blackboard Collaborate Ultra: Key Differences, Use Cases, and More (20 mins) Julia Tungli - ITS

Vyond: From Script to Animated Video (20 mins) Katrina Johnson – The Stearns Center, Digital Learning

Virtual Realty/Augmented Realty for Online Learning (20 mins) Jim McLean – ITS

Rename Your Screen Name e.g., Katrina Johnson A,B

Main Room

Online Labs (20 mins) Alexandra Masterson – College of Science

Advice In Starting Your Online Lab

- Design your lab with the course objectives in mind. You can always modify as your lab progress.
- Invest in an inexpensive document camera. Can use with Blackboard Collaborate and Zoom.
- Safety at home—still follow lab safety guidelines.
- Science kits or not? Liability?
- Make lab instructions simple and clear as possible.
- Be available online if you are asynchronous. Prefer synchronous, especially for freshmen & sophomores, with lots of live demonstrations online.
- Online demonstrations are a good way of demonstrating lab techniques to inexperienced students.

Breakout Session

Classroom Technologies: How can we help you?

Crystal Clemons Director, Classroom & Lab Technologies

ITS

Classroom and Lab Technologies

Classroom and Lab Technologies 2019 in review...

Refreshed classrooms

Technology enabled spaces

338 Equipment checkouts **43,489**

Computer lab visits

國 7,757

Courses supported

紀129,190

Supported classroom sessions

Learning Space Design

- Design and engineering of classroom technologies
- Manage classroom design and installation projects

1st Active Learning Classroom

Successes:

-Maximized writable surfaces on wall

-Displays around the room

-Faculty tech workshops kept in-class training to a minimum

Challenges:

-Cost; Unscalable model/unsustainable

- -Complexity of user interface
- -Various facilities issues
- -Technology support issues

The Iterative Process

GEORGE MASON UNIVERSITY

Implementation of the Process for Peterson Hall:

- PLAN: We worked with Facilities Planning and faculty to gather requirements
 - Continuous meetings with Stearns Center/Center for Teaching and Faculty Excellence and Learning Environments Group
 - Participated in focus group/workshop with Facilities Planning, faculty, and architects
- DESIGN/BUILD: We designed classrooms & group study rooms
- ASSESS: We held open houses for faculty & obtained feedback
- **REFINE**: Applied feedback to upcoming projects and/or technology standards
- PLAN: Used feedback from Innovation Hall 3rd floor project to inform Peterson Hall

Examples of the iterative process

- Low cost solutions for active learning
- A more flexible classroom with computer stations

Peterson

Annual Refresh

- Classroom technology has a 6yr lifecycle
- Approx 40 classrooms are refreshed across all campuses each year
- Recent changes to the standard technology package includes:
 - Wireless presentation to provide both faculty and students ability to share content wirelessly
 - Web conferencing functionality for faculty to engage remote students and host guest speakers
 - Enhanced presentation capabilities in active learning classrooms

Learning Space Design

Home > Service Catalog > Teaching & Learning > Learning Space Design

Service Summary | Key Features | Getting This Service | Availability | Policy

Service Summary

Learning Space Design (LSD) supports the design, engineering, and implementation of classroom technologies to support teaching and learning on all Mason campuses. LSD is responsible for coordinating and/or implementing classroom design projects to include new construction, renovations, and technology refreshes. Learning spaces include non-traditional environments, specialized labs, customized classrooms, and miscellaneous spaces that are not readily classified

Resources

 Classroom Specific Information -Stearn's Center Classroom Guide

ITS Services –

https://its.gmu.edu/service/learni ng-space-design/

Classroom Support

- Maintenance and support of classroom technologies, computer classrooms, and computer labs
- Provides Service Level Agreements (SLA) for maintenance and support on department owned classroom technologies.

Methods of Support

HELP DESK- MANAGES THE CLASSROOM SUPPORT HELP DESK TO PROVIDE TECHNICAL SUPPORT AS NEEDED TECHNICAL ASSISTANCE - PROVIDES REMOTE AND IN-PERSON ASSISTANCE TO REMEDIATE CLASSROOM TECHNOLOGY ISSUES TRAINING- PROVIDES REMOTE AND IN-PERSON TRAINING

Computing Services

- Manage over 800 computers in Mason classrooms and labs across all four campuses
- Test, implement, support and maintain the Citrix Virtual computing labs
- Provide technical support for hardware and software on supported workstations

Software Services

Software Images: Computing Services develops, maintains, and installs the software image for all Mason computers.

Software Request: Computing Services conducts software evaluation, testing and license compliance for all software installed on all Computing Services imaged workstations

Key Takeaways

Design Consultations: LSD offers design consultations for various learning spaces across all campuses. Technology Refresh: LSD ensures learning spaces are updated to improve the teaching and learning experience. Training: Classroom support offers training to inform instructors about available technology

Technical Support: Classroom support provides timely remote support to help prevent classroom downtime. Remote Software Delivery: Computing Services tests, implements, and supports the virtual computing labs Software: Computing Services develops, maintains, and installs the software image for Mason computers.

Breakout Session

Zoom and Blackboard Collaborate Ultra: Key Differences, Use Cases, and More (20 mins) Julia Tungli - ITS

Zoom and Blackboard Collaborate Ultra: Key Differences, Use Cases, and More Julia Tungli

Instructional Technologist

Learning Support Services, ITS

Differences

- Breakout Rooms
- File Sharing
- Integration with Blackboard
- Personal Meeting Room
- Polling
- Video Tiles
- Waiting Room
- Whiteboard

Use Cases

- How do you use web conferencing?
- How do you want to use web conferencing?

Tips for Success

- Do what you find comfortable.
- Try out any new tool or feature before you use it.
- Allow time for technical difficulties.
- Have a backup plan.
- Invite feedback for improvements.

Resources

Collaborate Ultra @ GMU: <u>https://its.gmu.edu/knowledge-base/introduction-to-blackboard-collaborate-ultra/</u>

- Collaborate Ultra @ Bb: <u>https://help.blackboard.com/Collaborate/Ultra/Moderator</u>
- Zoom @ GMU: <u>https://its.gmu.edu/service/zoom/</u>
- Zoom @ Zoom: <u>https://support.zoom.us/hc/en-us</u>
- Comparison Matrix: <u>http://bit.ly/BbCUvsZoom</u>
- This PowerPoint: Email jtungli@gmu.edu for a copy.

Breakout Session

Vyond: From Script to Animated Video (20 mins) Katrina Johnson – The Stearns Center, Digital Learning

Vyond Script to Animated Video

Katrina Johnson Instructional Designer, Digital Learning Stearns Center for Teaching and Learning

Dr. Gene Shuman Assistant Professor Information Sciences and Technology Volgenau School of Engineering IT 109: Intro to Programming

Learning to Program: A Piano Analogy

Professor Craig Esherick Associate Professor Sport Management, SRTM College of Education and Human Dev SPMT 455: Gov and Policy in Sports Org

Campus Recreation

Resources

Vyond - https://www.vyond.com

Animations

Two microlearning animations co-created by instructional designers and Mason professors to engage students with humor:

- Dr. Gene Shuman's Learning to Program: A Piano Analogy (shorturl.at/iDFYZ) (2:03 minutes)
- Professor Craig Esherick's <u>Campus Recreation</u> (shorturl.at/byEU4) (2:12 minutes)

Breakout Session

Virtual Realty/Augmented Realty for Online Learning (20 mins) Jim McLean – ITS

What is Augmented Reality

Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information, sometimes across multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory.

Milgram's Reality-Virtuality Continuum

VIRTUALITY CONTINUUM

MIXED REALITY -

REALITY

AUGMENTED REALITY (AR)

AUGMENTED VIRTUALITY (AV)

VIRTUAL REALITY

VR/AR Examples

Spatial VR Team Collaboration, Presentation & Virtual Office

Google Tour 360° Video with Immersive Interaction Blippar Augmented Reality Creation Tool

Software Resources

VR for Online Learning Collaborative Virtual Spaces

Spatial <u>https://spatial.io/</u> MeetinVR <u>https://www.meetinvr.com/</u> MootUp in Zoom <u>https://mootup.com/zoom/</u> LearnBrite <u>https://www2.learnbrite.com/</u>

> AR for Online Learning Project tools for students

Google Tour/Expeditions- <u>Google Expeditions</u> Tour Creator <u>https://arvr.google.com/tourcreator/</u> Theasys <u>https://www.theasys.io/</u> Blippar <u>https://www.blippar.com/</u>

Recommended Mobile Apps

Plantale <u>https://www.commonsense.org/education/app/plantale</u> Starwalk 2 <u>https://starwalk.space/en</u> Google Lens <u>https://lens.google.com/</u>

Hardware Resources

Equipment VR Equipment for Online Learning

Oculus Quest 2 <u>https://www.oculus.com/quest-2/</u> Occulus Rift <u>https://www.oculus.com/rift/</u> HTC Vive <u>https://www.vive.com/us/</u> Hololens 2 <u>https://www.microsoft.com/en-us/hololens</u>

AR Equipment for Online Learning

Any smart mobile device or tablet <u>Vuzix Blade</u> <u>Google Glass</u> <u>Epson Moverio BT-300</u> <u>DreamGlass</u>
Please Attend Our Spin Off Workshops at 3pm

Classroom Technologies: What to Expect in Horizon Hall (40 mins) Crystal Clemons, LeAnn Pittman

Group Work and Collaboration Tools (40 mins) Julia Tungli

Effective Video for Online Courses (40 mins) Katrina Johnson, Jim McLean Katrina Johnson, Instructional Designer, Stearns Center for Teaching and Learning, Digital Learning, kjoseph@gmu.edu

Crystal Clemons, Director, Classroom & Lab Technologies, ITS, <u>cclemons@gmu.edu</u>

Alexandra Masterson, Assistant Professor, Biology, College of Science, amaster2@gmu.edu

Joe Baldduci, Assistant Director, Instructional Technology/Media Services ITS, jbalducc@gmu.edu

Jim McLean, Instructional Technologist, ITS, jmclean2@gmu.edu

Julia Tungli, Instructional Technologist, ITS, jtungli@gmu.edu

LeAnn Pittman, Manager, Learning Space Design, ITS, <u>kpittman@gmu.edu</u>

IN OVATIONS in Teaching & Learning & Learn

stearnscenter.gmu.edu | @StearnsCenter | #MasonITL

Thank you for attending and to our sponsors, Blackboard and Libraries!

Explore other sessions & network: 2020itl.sched.com

Tell us what you think... Please complete the session feedback poll question on your screen. Want more time to talk about your teaching? Join a Teaching Square or Social "Lunch" 12:15-12:45pm daily.

Additional Session Resources: journals.gmu.edu/ITLCP/

